skip to main content


Search for: All records

Creators/Authors contains: "Ocaña, Victor"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The lack of continuous spatial and temporal sampling of hydrographic measurements in large parts of the Arctic Ocean remains a major obstacle for quantifying mean state and variability of the Arctic Ocean circulation. This shortcoming motivates an assessment of the utility of Argo-type floats, the challenges of deploying such floats due to the presence of sea ice, and the implications of extended times of no surfacing on hydrographic inferences. Within the framework of an Arctic coupled ocean–sea ice state estimate that is constrained to available satellite and in situ observations, we establish metrics for quantifying the usefulness of such floats. The likelihood of float surfacing strongly correlates with the annual sea ice minimum cover. Within the float lifetime of 4–5 years, surfacing frequency ranges from 10–100 days in seasonally sea ice–covered regions to 1–3 years in multiyear sea ice–covered regions. The longer the float drifts under ice without surfacing, the larger the uncertainty in its position, which translates into larger uncertainties in hydrographic measurements. Below the mixed layer, especially in the western Arctic, normalized errors remain below 1, suggesting that measurements along a path whose only known positions are the beginning and end points can help constrain numerical models and reduce hydrographic uncertainties. The error assessment presented is a first step in the development of quantitative methods for guiding the design of observing networks. These results can and should be used to inform a float network design with suggested locations of float deployment and associated expected hydrographic uncertainties. 
    more » « less
  2. Abstract

    A description and assessment of the first release of the Arctic Subpolar gyre sTate Estimate (ASTE_R1), a data‐constrained ocean‐sea ice model‐data synthesis, is presented. ASTE_R1 has a nominal resolution of 1/3° and spans the period 2002–2017. The fit of the model to an extensive (O(109)) set of satellite and in situ observations was achieved through adjoint‐based nonlinear least squares optimization. The improvement of the solution compared to an unconstrained simulation is reflected in misfit reductions of 77% for Argo, 50% for satellite sea surface height, 58% for the Fram Strait mooring, 65% for Ice Tethered Profilers, and 83% for sea ice extent. Exact dynamical and kinematic consistency is a key advantage of ASTE_R1, distinguishing the state estimate from existing ocean reanalyses. Through strict adherence to conservation laws, all sources and sinks within ASTE_R1 can be accounted for, permitting meaningful analysis of closed budgets at the grid‐scale, such as contributions of horizontal and vertical convergence to the tendencies of heat and salt. ASTE_R1 thus serves as the biggest effort undertaken to date of producing a specialized Arctic ocean‐ice estimate over the 21st century. Transports of volume, heat, and freshwater are consistent with published observation‐based estimates across important Arctic Mediterranean gateways. Interannual variability and low frequency trends of freshwater and heat content are well represented in the Barents Sea, western Arctic halocline, and east subpolar North Atlantic. Systematic biases remain in ASTE_R1, including a warm bias in the Atlantic Water layer in the Arctic and deficient freshwater inputs from rivers and Greenland discharge.

     
    more » « less